normal service test - перевод на русский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

normal service test - перевод на русский

SPECIAL COORDINATE SYSTEM IN DIFFERENTIAL GEOMETRY
Geodesic normal coordinates; Normal coordinate; Normal neighborhood
Найдено результатов: 3567
normal service test      
испытание в нормальных условиях эксплуатации
multinormal distribution         
  • Left: Classification of seven multivariate normal classes. Coloured ellipses are 1 sd error ellipses. Black marks the boundaries between the classification regions. <math>p_e</math> is the probability of total classification error. Right: the error matrix. <math>p_{ij}</math> is the probability of classifying a sample from normal <math>i</math> as <math>j</math>. These are computed by the numerical method of ray-tracing <ref name="Das" /> ([https://www.mathworks.com/matlabcentral/fileexchange/84973-integrate-and-classify-normal-distributions Matlab code]).
  • Bivariate normal distribution centered at <math>(1, 3)</math> with a standard deviation of 3 in roughly the <math>(0.878, 0.478)</math> direction and of&nbsp;1 in the orthogonal direction.
  • joint density]]
  • Top: the probability of a bivariate normal in the domain <math>x\sin y-y\cos x>1</math> (blue regions). Middle: the probability of a trivariate normal in a toroidal domain. Bottom: converging Monte-Carlo integral of the probability of a 4-variate normal in the 4d regular polyhedral domain defined by <math>\sum_{i=1}^4 \vert x_i \vert < 1</math>. These are all computed by the numerical method of ray-tracing. <ref name="Das"></ref>
  • '''a:''' Probability density of a function <math>\cos x^2</math> of a single normal variable <math>x</math> with <math>\mu=-2</math> and <math>\sigma=3</math>. '''b:''' Probability density of a function <math>x^y</math> of a normal vector <math>(x, y)</math>, with mean <math>\boldsymbol{\mu}=(1, 2)</math>, and covariance
<math>\mathbf{\Sigma} = \begin{bmatrix}
.01 & .016 \\
.016 & .04
\end{bmatrix}</math>. '''c:''' Heat map of the joint probability density of two functions of a normal vector <math>(x, y)</math>, with mean <math>\boldsymbol{\mu}=(-2, 5)</math>, and covariance
<math>\mathbf{\Sigma} = \begin{bmatrix}
10 & -7 \\
-7 & 10
\end{bmatrix}</math>. '''d:''' Probability density of a function <math>\sum_{i=1}^4 \vert x_i \vert</math> of 4 iid standard normal variables. These are computed by the numerical method of ray-tracing. <ref name="Das" />
GENERALIZATION OF THE ONE-DIMENSIONAL NORMAL DISTRIBUTION TO HIGHER DIMENSIONS
Multivariate gaussian distribution; Multivariate Gaussian distribution; Multivariate normal; Multivariate Gaussian; Bivariate Gaussian distribution; MVN; Bivariate normal distribution; Joint normality; Jointly normal; Jointly Gaussian; Jointly gaussian; Multivariate Gaussian random variable; Multinormal distribution; Jointly normally distributed; Bivariate normal; Gaussian discriminant analysis; Normal random vector; Multinormal; Multivariate normal random variable; Mardia's test; BHEP test; Gaussian random vector; Joint normal distribution; Multidimensional normal distribution; Friedman Rafsky Test; Multivariate Gaussian vector

математика

многомерное нормальное распределение

bivariate normal distribution         
  • Left: Classification of seven multivariate normal classes. Coloured ellipses are 1 sd error ellipses. Black marks the boundaries between the classification regions. <math>p_e</math> is the probability of total classification error. Right: the error matrix. <math>p_{ij}</math> is the probability of classifying a sample from normal <math>i</math> as <math>j</math>. These are computed by the numerical method of ray-tracing <ref name="Das" /> ([https://www.mathworks.com/matlabcentral/fileexchange/84973-integrate-and-classify-normal-distributions Matlab code]).
  • Bivariate normal distribution centered at <math>(1, 3)</math> with a standard deviation of 3 in roughly the <math>(0.878, 0.478)</math> direction and of&nbsp;1 in the orthogonal direction.
  • joint density]]
  • Top: the probability of a bivariate normal in the domain <math>x\sin y-y\cos x>1</math> (blue regions). Middle: the probability of a trivariate normal in a toroidal domain. Bottom: converging Monte-Carlo integral of the probability of a 4-variate normal in the 4d regular polyhedral domain defined by <math>\sum_{i=1}^4 \vert x_i \vert < 1</math>. These are all computed by the numerical method of ray-tracing. <ref name="Das"></ref>
  • '''a:''' Probability density of a function <math>\cos x^2</math> of a single normal variable <math>x</math> with <math>\mu=-2</math> and <math>\sigma=3</math>. '''b:''' Probability density of a function <math>x^y</math> of a normal vector <math>(x, y)</math>, with mean <math>\boldsymbol{\mu}=(1, 2)</math>, and covariance
<math>\mathbf{\Sigma} = \begin{bmatrix}
.01 & .016 \\
.016 & .04
\end{bmatrix}</math>. '''c:''' Heat map of the joint probability density of two functions of a normal vector <math>(x, y)</math>, with mean <math>\boldsymbol{\mu}=(-2, 5)</math>, and covariance
<math>\mathbf{\Sigma} = \begin{bmatrix}
10 & -7 \\
-7 & 10
\end{bmatrix}</math>. '''d:''' Probability density of a function <math>\sum_{i=1}^4 \vert x_i \vert</math> of 4 iid standard normal variables. These are computed by the numerical method of ray-tracing. <ref name="Das" />
GENERALIZATION OF THE ONE-DIMENSIONAL NORMAL DISTRIBUTION TO HIGHER DIMENSIONS
Multivariate gaussian distribution; Multivariate Gaussian distribution; Multivariate normal; Multivariate Gaussian; Bivariate Gaussian distribution; MVN; Bivariate normal distribution; Joint normality; Jointly normal; Jointly Gaussian; Jointly gaussian; Multivariate Gaussian random variable; Multinormal distribution; Jointly normally distributed; Bivariate normal; Gaussian discriminant analysis; Normal random vector; Multinormal; Multivariate normal random variable; Mardia's test; BHEP test; Gaussian random vector; Joint normal distribution; Multidimensional normal distribution; Friedman Rafsky Test; Multivariate Gaussian vector
двумерное нормальное распределение
normal force         
  • Figure 2: Weight (''W''), the frictional force (''F''<sub>''r''</sub>), and the normal force (''F''<sub>''n''</sub>) acting on a block. Weight is the product of mass (''m'') and the acceleration of gravity (''g'').
FORCE EXERTED ON AN OBJECT BY A BODY WITH WHICH IT IS IN CONTACT, AND VICE VERSA
Normal Force; Normal reaction
[спец.] вертикально направленная сила
multivariate normal distribution         
  • Left: Classification of seven multivariate normal classes. Coloured ellipses are 1 sd error ellipses. Black marks the boundaries between the classification regions. <math>p_e</math> is the probability of total classification error. Right: the error matrix. <math>p_{ij}</math> is the probability of classifying a sample from normal <math>i</math> as <math>j</math>. These are computed by the numerical method of ray-tracing <ref name="Das" /> ([https://www.mathworks.com/matlabcentral/fileexchange/84973-integrate-and-classify-normal-distributions Matlab code]).
  • Bivariate normal distribution centered at <math>(1, 3)</math> with a standard deviation of 3 in roughly the <math>(0.878, 0.478)</math> direction and of&nbsp;1 in the orthogonal direction.
  • joint density]]
  • Top: the probability of a bivariate normal in the domain <math>x\sin y-y\cos x>1</math> (blue regions). Middle: the probability of a trivariate normal in a toroidal domain. Bottom: converging Monte-Carlo integral of the probability of a 4-variate normal in the 4d regular polyhedral domain defined by <math>\sum_{i=1}^4 \vert x_i \vert < 1</math>. These are all computed by the numerical method of ray-tracing. <ref name="Das"></ref>
  • '''a:''' Probability density of a function <math>\cos x^2</math> of a single normal variable <math>x</math> with <math>\mu=-2</math> and <math>\sigma=3</math>. '''b:''' Probability density of a function <math>x^y</math> of a normal vector <math>(x, y)</math>, with mean <math>\boldsymbol{\mu}=(1, 2)</math>, and covariance
<math>\mathbf{\Sigma} = \begin{bmatrix}
.01 & .016 \\
.016 & .04
\end{bmatrix}</math>. '''c:''' Heat map of the joint probability density of two functions of a normal vector <math>(x, y)</math>, with mean <math>\boldsymbol{\mu}=(-2, 5)</math>, and covariance
<math>\mathbf{\Sigma} = \begin{bmatrix}
10 & -7 \\
-7 & 10
\end{bmatrix}</math>. '''d:''' Probability density of a function <math>\sum_{i=1}^4 \vert x_i \vert</math> of 4 iid standard normal variables. These are computed by the numerical method of ray-tracing. <ref name="Das" />
GENERALIZATION OF THE ONE-DIMENSIONAL NORMAL DISTRIBUTION TO HIGHER DIMENSIONS
Multivariate gaussian distribution; Multivariate Gaussian distribution; Multivariate normal; Multivariate Gaussian; Bivariate Gaussian distribution; MVN; Bivariate normal distribution; Joint normality; Jointly normal; Jointly Gaussian; Jointly gaussian; Multivariate Gaussian random variable; Multinormal distribution; Jointly normally distributed; Bivariate normal; Gaussian discriminant analysis; Normal random vector; Multinormal; Multivariate normal random variable; Mardia's test; BHEP test; Gaussian random vector; Joint normal distribution; Multidimensional normal distribution; Friedman Rafsky Test; Multivariate Gaussian vector

общая лексика

многомерное нормальное распределение

normal force         
  • Figure 2: Weight (''W''), the frictional force (''F''<sub>''r''</sub>), and the normal force (''F''<sub>''n''</sub>) acting on a block. Weight is the product of mass (''m'') and the acceleration of gravity (''g'').
FORCE EXERTED ON AN OBJECT BY A BODY WITH WHICH IT IS IN CONTACT, AND VICE VERSA
Normal Force; Normal reaction
нормальная сила
multinormal         
  • Left: Classification of seven multivariate normal classes. Coloured ellipses are 1 sd error ellipses. Black marks the boundaries between the classification regions. <math>p_e</math> is the probability of total classification error. Right: the error matrix. <math>p_{ij}</math> is the probability of classifying a sample from normal <math>i</math> as <math>j</math>. These are computed by the numerical method of ray-tracing <ref name="Das" /> ([https://www.mathworks.com/matlabcentral/fileexchange/84973-integrate-and-classify-normal-distributions Matlab code]).
  • Bivariate normal distribution centered at <math>(1, 3)</math> with a standard deviation of 3 in roughly the <math>(0.878, 0.478)</math> direction and of&nbsp;1 in the orthogonal direction.
  • joint density]]
  • Top: the probability of a bivariate normal in the domain <math>x\sin y-y\cos x>1</math> (blue regions). Middle: the probability of a trivariate normal in a toroidal domain. Bottom: converging Monte-Carlo integral of the probability of a 4-variate normal in the 4d regular polyhedral domain defined by <math>\sum_{i=1}^4 \vert x_i \vert < 1</math>. These are all computed by the numerical method of ray-tracing. <ref name="Das"></ref>
  • '''a:''' Probability density of a function <math>\cos x^2</math> of a single normal variable <math>x</math> with <math>\mu=-2</math> and <math>\sigma=3</math>. '''b:''' Probability density of a function <math>x^y</math> of a normal vector <math>(x, y)</math>, with mean <math>\boldsymbol{\mu}=(1, 2)</math>, and covariance
<math>\mathbf{\Sigma} = \begin{bmatrix}
.01 & .016 \\
.016 & .04
\end{bmatrix}</math>. '''c:''' Heat map of the joint probability density of two functions of a normal vector <math>(x, y)</math>, with mean <math>\boldsymbol{\mu}=(-2, 5)</math>, and covariance
<math>\mathbf{\Sigma} = \begin{bmatrix}
10 & -7 \\
-7 & 10
\end{bmatrix}</math>. '''d:''' Probability density of a function <math>\sum_{i=1}^4 \vert x_i \vert</math> of 4 iid standard normal variables. These are computed by the numerical method of ray-tracing. <ref name="Das" />
GENERALIZATION OF THE ONE-DIMENSIONAL NORMAL DISTRIBUTION TO HIGHER DIMENSIONS
Multivariate gaussian distribution; Multivariate Gaussian distribution; Multivariate normal; Multivariate Gaussian; Bivariate Gaussian distribution; MVN; Bivariate normal distribution; Joint normality; Jointly normal; Jointly Gaussian; Jointly gaussian; Multivariate Gaussian random variable; Multinormal distribution; Jointly normally distributed; Bivariate normal; Gaussian discriminant analysis; Normal random vector; Multinormal; Multivariate normal random variable; Mardia's test; BHEP test; Gaussian random vector; Joint normal distribution; Multidimensional normal distribution; Friedman Rafsky Test; Multivariate Gaussian vector

общая лексика

мультинормальный

Смотрите также

cumulative throughflow; fractional throughflow

bivariate normal distribution         
  • Left: Classification of seven multivariate normal classes. Coloured ellipses are 1 sd error ellipses. Black marks the boundaries between the classification regions. <math>p_e</math> is the probability of total classification error. Right: the error matrix. <math>p_{ij}</math> is the probability of classifying a sample from normal <math>i</math> as <math>j</math>. These are computed by the numerical method of ray-tracing <ref name="Das" /> ([https://www.mathworks.com/matlabcentral/fileexchange/84973-integrate-and-classify-normal-distributions Matlab code]).
  • Bivariate normal distribution centered at <math>(1, 3)</math> with a standard deviation of 3 in roughly the <math>(0.878, 0.478)</math> direction and of&nbsp;1 in the orthogonal direction.
  • joint density]]
  • Top: the probability of a bivariate normal in the domain <math>x\sin y-y\cos x>1</math> (blue regions). Middle: the probability of a trivariate normal in a toroidal domain. Bottom: converging Monte-Carlo integral of the probability of a 4-variate normal in the 4d regular polyhedral domain defined by <math>\sum_{i=1}^4 \vert x_i \vert < 1</math>. These are all computed by the numerical method of ray-tracing. <ref name="Das"></ref>
  • '''a:''' Probability density of a function <math>\cos x^2</math> of a single normal variable <math>x</math> with <math>\mu=-2</math> and <math>\sigma=3</math>. '''b:''' Probability density of a function <math>x^y</math> of a normal vector <math>(x, y)</math>, with mean <math>\boldsymbol{\mu}=(1, 2)</math>, and covariance
<math>\mathbf{\Sigma} = \begin{bmatrix}
.01 & .016 \\
.016 & .04
\end{bmatrix}</math>. '''c:''' Heat map of the joint probability density of two functions of a normal vector <math>(x, y)</math>, with mean <math>\boldsymbol{\mu}=(-2, 5)</math>, and covariance
<math>\mathbf{\Sigma} = \begin{bmatrix}
10 & -7 \\
-7 & 10
\end{bmatrix}</math>. '''d:''' Probability density of a function <math>\sum_{i=1}^4 \vert x_i \vert</math> of 4 iid standard normal variables. These are computed by the numerical method of ray-tracing. <ref name="Das" />
GENERALIZATION OF THE ONE-DIMENSIONAL NORMAL DISTRIBUTION TO HIGHER DIMENSIONS
Multivariate gaussian distribution; Multivariate Gaussian distribution; Multivariate normal; Multivariate Gaussian; Bivariate Gaussian distribution; MVN; Bivariate normal distribution; Joint normality; Jointly normal; Jointly Gaussian; Jointly gaussian; Multivariate Gaussian random variable; Multinormal distribution; Jointly normally distributed; Bivariate normal; Gaussian discriminant analysis; Normal random vector; Multinormal; Multivariate normal random variable; Mardia's test; BHEP test; Gaussian random vector; Joint normal distribution; Multidimensional normal distribution; Friedman Rafsky Test; Multivariate Gaussian vector

статистика

двумерное нормальное распределение

invariant subgroup         
SUBGROUP INVARIANT UNDER CONJUGATION
Normal subgroups; Invariant subgroup; ◅; Normal group; ⊲; ⊳; ⊴; ⊵; ⋪; ⋫; ⋬; ⋭; Normal Subgroup; Self-conjugate subgroup

математика

инвариантная подгруппа

нормальный делитель

normal subgroup         
SUBGROUP INVARIANT UNDER CONJUGATION
Normal subgroups; Invariant subgroup; ◅; Normal group; ⊲; ⊳; ⊴; ⊵; ⋪; ⋫; ⋬; ⋭; Normal Subgroup; Self-conjugate subgroup

математика

делитель нормальный

Определение

ИНТЕЛЛИДЖЕНС СЕРВИС
(англ. Intelligence Service), общее наименование разведывательных и контрразведывательных служб Великобритании.

Википедия

Normal coordinates

In differential geometry, normal coordinates at a point p in a differentiable manifold equipped with a symmetric affine connection are a local coordinate system in a neighborhood of p obtained by applying the exponential map to the tangent space at p. In a normal coordinate system, the Christoffel symbols of the connection vanish at the point p, thus often simplifying local calculations. In normal coordinates associated to the Levi-Civita connection of a Riemannian manifold, one can additionally arrange that the metric tensor is the Kronecker delta at the point p, and that the first partial derivatives of the metric at p vanish.

A basic result of differential geometry states that normal coordinates at a point always exist on a manifold with a symmetric affine connection. In such coordinates the covariant derivative reduces to a partial derivative (at p only), and the geodesics through p are locally linear functions of t (the affine parameter). This idea was implemented in a fundamental way by Albert Einstein in the general theory of relativity: the equivalence principle uses normal coordinates via inertial frames. Normal coordinates always exist for the Levi-Civita connection of a Riemannian or Pseudo-Riemannian manifold. By contrast, in general there is no way to define normal coordinates for Finsler manifolds in a way that the exponential map are twice-differentiable (Busemann 1955).

Как переводится normal service test на Русский язык